
Creating a jump formula for a platformer game

Alexander Winter

October 4, 2017

1

When developing independent video games, a customary way of setting
up game physics is by tweaking and testing constants into a formula until
desired behavior seems to be attained. While it may have been successful for
many games, this process can take much more time than intended and isn’t
open to modifications. Magic values obtained from tweaking and testing do
not contain any information regarding the criteria used to find them. They
will often cause problems to the next developer working on it.

Hence, the proposed solution is to find these said constants from the
criteria automatically. With algebra and differential equations, it is possible
to express the desired constants from input criteria like timings and distance.

While this process of expressing game physics constants as relations of
game physics criteria can be done for any type of game physics, this paper
focus on the jump formula of platformer games.

The following sections go through the complete process of finding specific
values from criteria. The last section describes an implementation of the
formula in a game.

2

Velocity function

Let V (t) represent the vertical velocity of the moving object at any time t.

V (t) = V0 + s ·R−G · t + j · F · t

V0 ≥ 0 is the initial velocity

G > 0 is vertical velocity resulting from

F ≥ 0 is the floating constant. It provides a height bonus based on how
long the jump button is held after the start of the jump.

j = {0, 1} is a boolean representing the status of the jump button, j = 1 if
pressed, otherwise j = 0

R ≥ 0 is the running constant. It provides a height bonus based on the
objet’s horizontal speed.

s ∈ [0, 1] indicates how fast the object is going from 0 to 1 in relation to its
maximum speed.

Height function

In order to impose height constants as inputs, we will need to define a
height function.

Let y(t) represent the height of the object at any time t. The derivative of y
is its velocity.

dy

dt
= V (t)⇒dy

dt
= V0 + s ·R−G · t + j · F · t

dy = (V0 + s ·R−G · t + j · F · t)dt∫
dy = V0

∫
dt + s ·R

∫
dt−G

∫
t dt + j · F

∫
t dt

y = V0 · t + s ·R · t− G · t2

2
+

j · F · t2

2
+ C

C = 0 is the initial vertical position (and can safely be ignored)

3

Input constants

The input constants are criteria imposed by the developer to adjust the
jump to follow a specific behavior. All these constants have meaning for the
game in opposition of the constants that are directly in the formula.

The input constants are

Y1 ≥ 0 is the maximum height of a jump with no bonus for horizontal
velocity or button holding.

Y2 ≥ Y1 is the maximum height of a jump with the button held for the time
of the jump but without horizontal velocity.

Y3 ≥ Y2 is the maximum height of a jump with both bonuses.

L > 0 is the time needed to complete the jump assuming the object is on a
flat ground. The jump of length L reaches height Y2 meaning it’s done
with the button held but without horizontal velocity.

These conditions assume that

If j = 0 and s = 0 then ymax = Y1

If j = 1 and s = 0 then ymax = Y2 and t2 − t1 = L where y(t1)y(t2) = C
and t1 6= t2

If j = 1 and s = 1 then ymax = Y3

4

Finding when the object is at its max height
Let’s find t for ymax. We know at the extremums of a function the value of
the derivative is 0.

ymax ⇒ V (t) = 0

V (t) = 0 ⇒V0 + s ·R−G · t + j · F · t = 0

V0 + s ·R = G · t− j · F · t
V0 + s ·R = (G− j · F)t

t =
V0 + s ·R
G− j · F

Then we can find ymax:

y(
V0 + s ·R
G− j · F

) = V0 ·
V0 + s ·R
G− j · F

+ s ·R · V0 + s ·R
G− j · F

−
G · (V0+s·R

G−j·F)2

2
+

j · F · (V0+s·R
G−j·F)2

2

=
V0(V0 + s ·R)

G− j · F
+

s ·R(V0 + s ·R)

G− j · F
− G(V0 + s ·R)2

2(G− j · F)2
+

j · F (V0 + s ·R)2

2(G− j · F)2

=
V0(V0 + s ·R) + s ·R(V0 + s ·R)

G− j · F
− G(V0 + s ·R)2 + j · F (V0 + s ·R)2

2(G− j · F)2

=
(V0 + s ·R)2

G− j · F
− (G + j · F)(V0 + s ·R)2

2(G− j · F)2

= (V0 + s ·R)2
(

1

G− j · F
− G + j · F

2(G− j · F)2

)
= (V0 + s ·R)2

(
2(G− j · F)−G + j · F

2(G− j · F)2

)
= (V0 + s ·R)2

(
2G− 2 · j · F −G + j · F

2(G− j · F)2

)
= (V0 + s ·R)2

(
G− j · F

2(G− j · F)2

)
=

(V0 + s ·R)2

2(G− j · F)

5

Using inputs to find relations

Finding L as a relation of other constants

Since L = t2 − t1, let’s find t1 and t2

y(t1) = y(t2) = C ⇒ V0 · t + s ·R · t− G · t2

2
+

j · F · t2

2
+ C = C

V0 · t + 0 ·R · t− G · t2

2
+

1 · F · t2

2
= 0

t2
F −G

2
+ t · V0 = 0

t

(
t
F −G

2
+ V0

)
= 0

t1 = 0

t2
F −G

2
+ V0 = 0

t2 =
2V0

G− F

So

L =
2V0

G− F
− 0 =

2V0

G− F

V0 in relation with G

If j = 0 and s = 0 then ymax = Y1, so

6

Y1 =
(V0 + s ·R)2

2(G− j · F)

Y1 =
V 2
0

2G

2G · Y1 = V 2
0

V0 =
√

2G · Y1

F in relation with G

If j = 1 and s = 0 then ymax = Y2

Y2 =
(V0 + s ·R)2

2(G− j · F)

Y2 =
(
√

2G · Y1)
2

2(G− F)

Y2 =
G · Y1

G− F

G− F =
G · Y1

Y2

F = G− G · Y1

Y2

R in relation with G

7

If j = 1 and s = 1 then ymax = Y3

Y3 =
(V0 + s ·R)2

2(G− j · F)

Y3 =
(
√

2G · Y1 + R)2

2(G− (−G·Y1

Y2
+ G))

Y3 =
(
√

2G · Y1 + R)2

2(G·Y1

Y2
)

Y3 =
Y2(
√

2G · Y1 + R)2

2(G · Y1)

Y3 =
Y2(2G · Y1 + 2R

√
2G · Y1 + R2)

2(G · Y1)

Y2(2G · Y1) + Y2 · 2R
√

2G · Y1 + Y2 ·R2

2(G · Y1)
− Y3 = 0

Y2 +
Y2 · 2R√
2G · Y1

+
Y2 ·R2

2(G · Y1)
− Y3 = 0

Y2

2(G · Y1)
R2 +

2Y2√
2G · Y1

R + (Y2 − Y3) = 0

a =
Y2

2(G · Y1)
, b =

2Y2√
2G · Y1

, c = Y2 − Y3

∆ = b2 − 4ac ⇒∆ =

(
2Y2√

2G · Y1

)2

− 4
Y2

2(G · Y1)
(Y2 − Y3)

8

∆ =
4Y 2

2

2G · Y1

− 4Y2(Y2 − Y3)

2(G · Y1)

∆ =
2Y 2

2 − 2Y2(Y2 − Y3)

G · Y1

∆ =
2Y 2

2 − 2Y 2
2 + 2Y2 · Y3

G · Y1

∆ =
2Y2 · Y3

G · Y1

R =
−b±

√
∆

2a
⇒R =

− 2Y2√
2G·Y1

±
√

2Y2·Y3

G·Y1

2 Y2

2(G·Y1)

R =

−2Y2√
2
±
√

2Y2 · Y3

Y2
√
G·Y1

G·Y1

R =
√

2G · Y1

(
−1±

√
Y3

Y2

)

Since R ≥ 0,

√
2G · Y1

(
−1±

√
Y3

Y2

)
> 0

Since G ≥ 0 and Y1 > 0,

−1±
√

Y3

Y2

> 0

9

−1−
√

Y3

Y2

≯ 0

So

R =
√

2G · Y1

(
−1 +

√
Y3

Y2

)

R =
√

2G · Y1

(√
Y3

Y2

− 1

)

10

Finding constants in relation to input

We have

L =
2V0

G− F

V0 =
√

2G · Y1

F = G− G · Y1

Y2

R =
√

2G · Y1

(√
Y3

Y2

− 1

)

So

G− F =
G · Y1

Y2

L =
2V0

G− F
⇒ L =

2V0 · Y2

G · Y1

G =
2V0 · Y2

L · Y1

Then we can find V0

V0 =
√

2G · Y1 ⇒ V0 =

√
2

2V0 · Y2

L · Y1

· Y1

V0 =

√
4V0 · Y2

L

11

V 2
0 =

4V0 · Y2

L

V0 =
4Y2

L

We can find G

G =
2V0 · Y2

L · Y1

G =
24Y2

L
· Y2

L · Y1

G =
8Y 2

2

L2 · Y1

We can find F

F = G− G · Y1

Y2

F =
8Y 2

2

L2 · Y1

−
8Y 2

2

L2·Y1
· Y1

Y2

F =
8Y 2

2

L2 · Y1

− 8Y2

L2

F =
8Y 2

2 − 8Y2 · Y1

L2 · Y1

F =
8Y2(Y2 − Y1)

L2 · Y1

12

Finally we can find R

R =

√
2

8Y 2
2

L2 · Y1

· Y1

(√
Y3

Y2

− 1

)

R =
4Y2

L

(√
Y3

Y2

− 1

)

13

Generating the specific formula from inputs

Now that all constants have been found as relations of inputs, their values
can be found by inserting in inputs.

V0 =
4Y2

L

G =
8Y 2

2

L2 · Y1

F =
8Y2(Y2 − Y1)

L2 · Y1

R =
4Y2

L

(√
Y3

Y2

− 1

)

As an example, let’s take L = 3
4
, Y1 = 2, Y2 = 4 and Y3 = 5

V0 =
4 · 4

3
4

=
64

3
= 21.3

G =
8 · 42

(3
4
)2 · 2

=
1024

9
= 113.7

F =
8 · 4(4− 2)

(3
4
)2 · 2

=
512

9
= 56.8

R =
4 · 4

3
4

(√
5

4
− 1

)
=

32
√

5− 64

3
≈ 2.5181

The formula can then be written as

V (t) =
64

3
+ s · 32

√
5− 64

3
− 1024

9
· t + j · 512

9
· t

14

Applying the formula into a game

The formula to be used in the game physics is the velocity formula. Even
though the position of the moving object is very relevant when talking about
game physics, the jump of the object may not be the only thing affecting
the object’s position and movement. Thus the moving object should hold
a position vector and a velocity vector. The velocity is continuously added
to the object’s position. In a video game program, this continuous action is
done every frame, typically 60 times per seconds.

The following example is a class definition with minimum requirements to
implement the formula.

class JumpingObject

{

Vector position, velocity;

void update(float delta) {

//velocity formula gets applied here

position += velocity * delta;

}

}

The formula’s implementation then goes as follows:

void update(float delta)

{

if(buttonPressed)

{

if(onGround)

velocity.y = V0 + s * R;

velocity.y += F * delta;

}

velocity.y -= G * delta;

position += velocity * delta;

}

15

V0, R, F and G are constants and should be assigned to the values found
earlier. Notice how j got implemented from the if statement. However, it is
not possible to do that for s since jump bonus from horizontal velocity is only
applied once. s must be implemented as the ratio of speed over maximum
speed. If the object has no maximum speed, you can select a value at which
the object must jump max height and then ensure the ratio is not bigger than
1. If the ratio becomes bigger than 1, the object will reach heights higher
than Y3.

A simple 2-dimensional implementation of that horizontal velocity ratio can
be written as

void update(float delta)

{

if(buttonPressed)

{

if(onGround)

velocity.y += V0 + min(abs(velocity.x) / maxSpeed, 1) * R;

velocity.y += F * delta;

}

velocity.y -= G * delta;

position += velocity * delta;

}

The abs function prevents the ratio from becoming negative and the min

function ensures the ratio never exceeds 1.

16

Finally, horizontal movement must be implemented. This example presents
an algorithm using 2 buttons as inputs to move the object horizontally. It is
2-dimensional but can be easily expanded to 3 dimensions.

//Constants

float acceleration, deceleration, maxSpeed;

float V0, G, R, F;

void update(float delta)

{

int prevDir = signum(velocity.x);

int newDir = 0;

if(leftPressed != rightPressed) //if only one of them is pressed

newDir = leftPressed ? -1 : 1;

velocity.x -= prevDir * deceleration * delta;

if(signum(player.velX) != prevDir)

velocity.x = 0;

if(abs(velocity.x) < maxSpeed || prevDir != newDir)

{

velocity.x += newDir * acceleration * delta;

if(abs(player.velX) > maxSpeed && prevDir == newDir)

velocity.x = maxSpeed * prevDir;

}

if(jumpPressed)

{

if(onGround)

velocity.y += V0 + min(abs(velocity.x) / maxSpeed, 1) * R;

velocity.y += F * delta;

}

velocity.y -= G * delta;

position += velocity * delta;

}

17

